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BEGINNING OF PLASTIC YIELDING IN A STRESS CONCENTRATION ZONE 

M. A. Legan UDC 539.214;539.374;539.375 

Classical strength criteria are currently being widely used in the strength design of 
structural elements. Here, it is assumed that plastic yielding begins when, in accordance 
with the chosen criterion, the limiting stress state is attained at even one (the most heavily 
stressed) point of the structure. However, these criteria do not always consider how the be- 
ginning of plastic flow is affected by the nonuniformity of the stress distribution near the 
point of greatest stress. 

The subject of the effect of nonuniformity of the stress state on the yield point in 
the region where the stresses are maximal has long been of interest to researchers [1-3]. 
Subsequent to [1-3], investigators made use of the gradient approach proposed in [i] to eval- 
uate this nonuniformity and its effect on the local yield point at the most heavily stressed 
point of the body [4-6]. Signs of plastic flow in the region of maximum stresses were con- 
sidered to be the appearance of Luders' lines in specimens of mild steel [l] and deviations 
from elastic strain laws detected by strain gauges or other means [4, 5]. It was noted that 
these indications of plastic yielding are manifest when the stresses at the most heavily 
stressed point exceed the yield point in a uniform stress state Cy. Recent experiments have 
detected deviations from elastic strain laws by the highly sensitive method of holographic 
interferometry [7, 8]. These experiments have also confirmed that there is an increase in 
the local yield point at the most heavily stressed point of the body. The results that were 
obtained were used as a basis for proposing a gradient criterion for the onset of plastic 
flow in a nonuniform stress state [9-11]. 

In the present study, we use the example of the tension of a plate with an elliptical 
hole to examine the range of validity of the gradient criterion and the continuum mode], in 
the case of very small holes. We note that there is a connection between this criterion and 
the structure of the material, and we show that the criterion actually reflects the energy 
dependence of the beginning of plastic flow for a fairly broad range of stress-concentration 
factors and hole sizes. 

i. Range of Validity of the Gradient Criterion and the Continuum Model in the Case of 
Very Small Holes. In accordance with the gradient criterion, in a nonuniform stress state 
plastic strains occur only when an equivalent stress - let this be the stress intensity o i - 
at the most heavily stressed point of the given body oimax exceeds Oy and reaches the local 
yield point Oy~: 

+ VLoG/  a ). (1.1) 

Here, G = Igrad oil is the modulus of the gradient of o i at the point subject to t]he greatest 
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stress; L0 is a material constant having the dimension of length. In a nonuniform stress 
state, G = 0 and Oy E = Oy. This criterion is substantiated by experiments involving the 

tension of wide flat specimens with a central elliptical hole and specimens with lateral 
notches [9-11]. In [9-11], the stress-intensity factor ranged in value from 3 to i0, while 
the dimension of the elliptical hole in the direction perpendicular to the tension direction 
was i0 or 20 mm. However, it must be noted that, for smaller holes, the radius of curvature 
across the specimen at the tip of the concentrator will also be smaller. According to [i0], 
at finite values of K, the radius of curvature at the tip of the concentrator also cannot 
be less than a certain value if contradictions are to be avoided in the model. 

This assertion requires additional study. Our goal here is to determine the range of 
application of the gradient yield criterion for small holes. The fact is that G and Oy 

increase without limit when the dimensions of the hole in the section liable to the greatest 
stress decrease to infinitely small values. Thus, in the case of very small holes, oimax, 
while remaining at or below the local yield point, may take such exaggerated values that the 
nominal stress away from the hole, connected with oimax by the elastic solution, will exceed 
Oy, i.e., the gradient criterion of the beginning of plastic flow will become physically 

meaningless. 

Let us examine this contradiction using the example of the tension of a plate with an 
elliptical hole (Fig. i) when a = 0 and ~/2. In Fig. la and b are the major and minor semi- 
axes of the ellipse and a is the angle between the major semi-axis and the tension direction. 
Knowing the elastic solution [12], we can obtain an expression for the modulus of the gradi- 
ent of o i at the tip of the concentrator: 

G = a ~  aX (1,25 + 0,5/K)(K-- i)~/C. ( 1 . 2 )  

H e r e ,  K i s  t h e  s t r e s s  c o n c e n t r a t i o n  f a c t o r  (K = 1 + 2 a / b  a t  a = ~ / 2 ,  K = 1 + 2 b / a  a t  a = 0 ) ;  
C i s  t h e  d i m e n s i o n  o f  t h e  h o l e  i n  t h e  s e c t i o n  l i a b l e  t o  t h e  g r e a t e s t  s t r e s s  (C = 2a a t  a = 
~ / 2 ,  C = 2b a t  a = 0 ) .  F o r  s u f f i c i e n t l y  s m a l l  C a n d  K ~ 1,  i n  a c c o r d a n c e  w i t h  ( 1 . 1 )  a n d  
( 1 . 2 )  we w i l l  h a v e  an  e x a g g e r a t e d  v a l u e  o f  t h e  l o c a l  y i e l d  p o i n t  a y  s s u c h  t h a t  i t  w i l l  r e a c h  
t h e  v a l u e  Oy a t  i n f i n i t y  b e f o r e  i t  r e a c h e s  t h e  v a l u e  o f  Oy s a t  t h e  t i p  o f  t h e  c o n c e n t r a t o r .  

S i n c e  p l a s t i c  f l o w  h a s  n o t  y e t  b e g u n  by  t h i s  mome n t ,  we c a n  u s e  t h e  e l a s t i c  s o l u t i o n  a n d  
w r i t e  a c o n d i t i o n  e x p r e s s i n g  t h e  i m p e r m i s s i b i l i t y  o f  s u c h  a s i t u a t i o n :  

g v. (1.3) 
In essence, this condition means that plastic flow at the tip of the concentrator cannot 
begin later than it does away from the hole. It follows from this condition and Eq. (i.i) 

that #LoG/oimax ! K - i. Squaring both sides of this inequality and inserting Eq. (1.2) 
for G, we obtain L0(i.25 + 0.5/K)(K - I)2/C E (K - i) a. From this, we find the desired 
limitation C t (1.25 + 0.5/K)L0 or K = I. 

Thus, in the tension of a plate with an elliptical hole, the gradient criterion can 
be used without violating condition (1.3) only if the dimension of the hole in the section 
liable to the greatest stress is no less than 

C.  = (1,25 + O,5/K)Lo. ( 1 . 4 )  
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With a change in K from 1 (for cracks extending in the tension direction) to an infinitely 
large value (for cracks perpendicular to the tension direction), C, changes only slightly 
(from 1.75L0 to 1.25L0). For a circular hole, K = 3 and C, = (4.25/3)L0. It should be 
noted that L 0 = 0.16 mm was found in [9-11] in experiments conducted for materials D19AT, 
V95, and St. 3. Thus, for these materials, condition (]_.3) is violated only for very small 
holes in the most heavily stressed section. Here, the condition is violated when the dimen- 
sions of the hole lie within the range 0.20-0.28 mm - the exact value required depending on 
the shape of the hole. 

We will assume that the contradiction discussed above is a consequence of having used the 
continuum model to describe the properties of the material while attempting to explore the 
question of the onset of plastic flow in a body having a very small hole. If we suppose 
that a material already contains microcracks of length 1.25L 0 or other defects equivalent 
with respect to the local yield point when we create small holes with a dimension less than 
C, in the section liable to the greatest stress, then according to the gradient criterion 
plastic flow will begin near the tips of the numerous natural defects when the nominal 
stress reaches the value Oy. Such a flow will in turn lead to the plastic deformation nor- 

mally expected to occur in the material in a uniform stress state. Thus, the contradiction 
is resolved. A similar hypothesis explaining the actual strength of brittle materials in 
terms of microcracks already present in them was advanced in the classical work on fracture 
mechanics [13]. 

If we speak of local ultimate strength rather than local yield point for brittle ma- 
terials, it becomes interesting, in the light of this hypothesis, to examine the experimen- 
tal data on the static strength of notched cast-iron specimens whose internal structure is 
characterized by different degrees of nonuniformity [14]. Serensen and Kramarenko [14] con- 
cluded on the basis of this data that the effect of a stress concentration on static 
strength is greatest for the strongest and most uniform cast irons. Thus, other conditions 
being equal, the smaller the internal discontinuities, the smaller the increase in local 
yield strength. 

Serensen and Kramarenko [14] studied brint!e fracture; the increase in local ultimate 
strength was represented as a function of the modulus of the gradient of the first principle 
stress o i divided by oi max. Thus, the smaller the internal discontinuities, the smaller 
the value of the parameter L i (analogous to L0) with the modulus of the gradient of ol. It 
should be noted that the mean fracture stress for notched cast-iron specimens depends only 
slightly on the parameter K and is close to the fracture stress for smooth specimens. Thus, 
in order to describe experimental data on the strength of cast-iron structural elements 
using the gradient criterion, it is necessary to take values of L~ that are considerably 
greater than the values of L 0 found for materials DI9AT, V95, and St. 3. This is a conse- 
quence of the high degree of nonuniformity of the internal structure of cast irons compared 
to these materials. 

In contrast to cast iron, the strength of a homogeneous material such as glass depends 
very heavily on the presence of stress raisers (even small scratches), i.e., from the view- 
point of the gradient approach, L i is very small. However, as was shown by Griffith [13], 
very small (depth of about 10 -3 mm) scratches on the surface of glass do not have a weakening 
effect - although the stress concentration at the bottom of the scratch is very high. Grif- 
fith attributed this to the presence of numerous microscopic cracks, comparable in size to 
the depth of the scratch, in glass in its natural state. 

Thus, we see that there is a certain connection between the gradient criterion and the 
structure of a material. The existence of this connection makes it possible to establish 
specific sizes of stress concentrators for which the continuum model and the nonclassical 
gradient criterion of the limiting state of a material in a nonuniform stress state can be 
used to determine the beginning of plastic flow or fracture of actual structures. Within 
the framework of the continuum model, the above-noted contradiction renders the gradient 
criterion invalid for concentrators smaller than a certain size determined on the basis of 
the criterion from experiments conducted on specimens with large concentrators. 

2. Energy Analysis of the Beginning of Plastic Flow. In accordance with gradient cri- 
terion (i.i), by the moment of the beginning of plastic flow at those points near the stress 
raiser where o.i > Oy, the specific elastic strain energy will be greater than its critical 
value (which corresponds to the condition o i = Oy). The specific strain energy is expressed 
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by the formula [15] U = ((i +p)/3E)oi 2_ (~ is thePoisson's ratio andEis theYoung'smodu- 
lus). At o i = Oy, it has the critical value Ucr = ((i + p)/3E)oy 2. Then the specific excess 

energy at o i > Oy will be 

V b n d ~ -  U - -  U c r  ~ -3--E-- - -  Y " 

In the problem of the tension of a plate with an elliptical hole (see Fig. i) with ~ = 
0 and ~/2, we obtained some interesting results by calculating the integral of specific ex- 
cess energy in that part of most heavily stressed section where o i > Oy by the beginning of 

plastic flow. It turned out that, within a fairly broad range of hole sizes and shapes, 
the integral nearly has a constant value. This value is in turn the product of two mate- 
rial constants, i.e., is itself a material constant: 

ff 2 2 N 
U b n d d r  = 1 + ~ ( ~  - -  0,~ dr ~.. U c r L  o. 

3E ( 2 . 1 )  
~i>Oy 6~>6 y 

The resul ts  obtained here have confirmed the original proposition that since p las t ic  flow 
in actual solids begins within a certain volume of a material rather than at a certain 
point, then the mathematical condition for i t s  inception must also be sought in a certain 
neighborhood of the point l iable  to the greatest  s t ress  in the body. On diagrams showing 
the dis t r ibut ion of specif ic  excess energy across the most heavily stressed section for two 
dif ferent  concentrators (Fig. 2), Eq. (2.1) can be represented as follows: the ve r t i ca l ly  
hatched area [the value of the integral  in (2.1) for concentrator i] is nearly equal to the 
horizontally hatched area (the value of the integral  for concentrator 2). 

The accuracy and range of va l id i ty  of Eq. (2.1) can be judged from Figs. 3 and 4, which 
show the resul ts  of calculation of the normalized integral  of specif ic excess energy 

Ubnddr/Ucr Lo. 
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The value L0 = 0.16 mm, obtained from experiments, was used in these calculations. It is 
evident from Fig. 3, showing values of the normalized integral for circular (K = 3) and 
elliptical (K = 6) holes (points 1 and 2) of different sizes, that Eq. (2.1) is satisfied 
quite well on the whole. However, the values of the integral exceed the nominal value for 
cases in which the dimensions of the hole in the most heavily stressed section are close to 
C,, i.e., are close to the limits of the validity of condition (1.3). This is to be ex- 
pected, since at C < C* the gradient criterion gives clearly exaggerated values of the nom- 
inal stresses corresponding to the beginning of plastic flow. It is evident from Fig. 4, 
showing the dependence of the normalized integral on the stress concentration factor K for 
two fixed hole dimensions across the most heavily stressed section C = 20 and i0 mm (]points 
1 and 2), that for moderate concentration factors (K < i0) the integral takes nearly constant 
values. At very large K, the values of the integral increase significantly. 

The results shown here indicate that the gradient criterion actually reflects the energy 
dependence of the beginning of plastic flow within a fairly broad range of stress concentra- 
tion factors and hole dimensions. In accordance with this criterion, plastic strains occur 
only when the integral of specific excess energy reaches the limiting value UcrL 0 in that 
part of most heavily stressed section in which o i > Oy. 

At the same time, the integral of specific excess energy calculated in accordance with 
the gradient criterion exceeds UcrL 0 for concentrators with a crack-like shape and for small 
holes. Thus, in these cases, the nominal stresses at which plastic flow begins are lower 
than the values predicted by the gradient criterion. Further study is needed to establish 
the degree of agreement between the energy model of the beginning of plastic flow and the 
gradient criterion for limiting cases. For example, the requirement that the values of the 
integral be constant in the case of small holes not only leads to a decrease in the limit- 
ing nominal stresses corresponding to the beginning of plastic flow, it also leads to a de- 
crease - relative to Eq. (1.4) - in the dimensions C, at which these nominal stresses ex- 
ceed Oy. Thus, new (lower) estimates of the dimensions of natural stress concentrators in 

a material can be obtained. The values of the integral exceed the nominal value for very 
large values of K because the actual stress distribution in a material near the tip of a 
crack-like concentrator far from always corresponds to the classical solution of the linear 
problem of elasticity. 

Thus, according to this solution, enormous values of stress intensity and specific 
strain energy are obtained for sufficiently small but finite nominal loads near the tip of 
a crack-like concentrator. However, allowing for geometric nonlinearity and the deviations 
from Hooke's law in the problem of the tension of a plate with a crack-like concentrator 
leads to a reduction in the values of these quantities in the neighborhood of the tip of 
the concentrator for the same nominal load [16]. Thus, the values of the integral of spe- 
cific excess energy, significantly exceeding UcrL0, that are obtained for very large K do 
not correspond to the actual value of the integral for real materials. 

Consequently, our analysis has shown that the criterion of the beginning of plastic 
flow in a nonuniform stress state is of an energy nature and can be expressed fairly simply 
in energy units, assuming the latter are correctly calculated. In particular, in the case 
of the tension of a plate with an elliptical hole, plastic strains occur only when the 
integral of specific excess energy reaches the limiting value UcrL 0 in that part of the 
most heavily stressed section where U > Ucr. 

We thank M. D. Novopashin for his useful observations and support in the course of 
our investigation. 
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INSTABILITY OF ELASTOPLASTIC PLANE FLOWS 

G. A. Korolev UDC 539.374:621.91 

Under conditions of high-speed elastoplastic deformation material flow inhomogeneities 
associated both with the presence of elastic forces, which may cause self-oscillating pro- 
cesses, and with localized adiabatic heating on a narrow interval of the highest strain 
rates, are found to occur [i]. Thermoplastic shear was investigated mathematically in [2, 
3], and a model of an elastoviscous fluid was considered in [4]. Here, the case of plane 
elastoplastic flow is studied with allowance for the thermal effects associated with adiabat- 
ic conditions and the convective removal of heat from the zone of intense deformation pro- 

cesses. 

The equation of motion of the medium and the energy balance equation take the form i. 
[3, 4]: 

ov ov t os ( 1 . 1 )  
oT ~ Ve ~p = T ~ ;  

per -~  + Ve~-~ = _Oy  ~ 

where V, S, 0, and F are the velocity, stress, temperature, and degree of deformation, re- 
spectively, Y is a coordinate, T is time, V c is the convective velocity component, p, cv, 
and % are the density, specific heat, and thermal conductivity coefficient, and ~ = 0.g- 
0.95 is a coefficient. 
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